VLSI Engineering and Design Automation Division Seminar WUT - November 16, 2007, Warsaw, Poland

Studying CMOS Defects with DefSim

Overview and Demonstration

A. Jutman¹, W. A. Pleskacz²

¹Tallinn University of Technology, Estonia ²Warsaw University of Technology, Poland artur@pld.ttu.ee, pleskacz@imio.pw.edu.pl

- Introduction and Motivation
- Implementation of defects
- DefSim chip structure and design
- DefSim in a lab and classroom
- Experiments with defects and models
- DefSim software
- Conclusions and Future work

Project Funding

Financial support for DefSim hardware development was provided by:

- REASON (IST-2000-30193), an IST project funded by the European Union;
- Polish State Committee for Scientific Research (project No. 4 T11B 023 24);
- Estonian Science Foundation grants G5649, G5910 and Enterprise Estonia.

DefSim Personal and DefSim Server software was developed by Testonica Lab free of charge

Project Team

Warsaw University of Technology

Coordinator: Dr. Witold PleskaczT. BorejkoT. GugalaP. PizonA. WalkanisP. TrochimiukK. Bolczak

X

Coordinator: Prof. Raimund Ubar

- A. Jutman
- S. Devadze
- E. Orasson

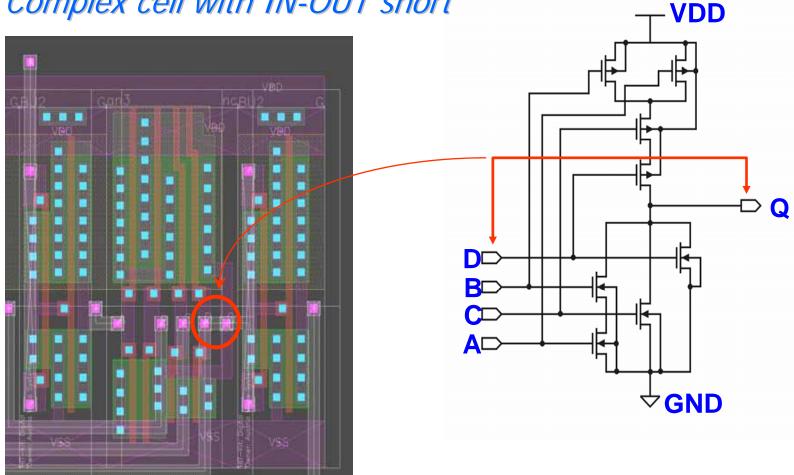
Dr. Viera Stopjakova

The team would like to thank Prof. W. Kuzmicz from Warsaw University of Technology for his support and valuable feedback

 ITRS: testing is already one of key problems in current generation of VLSI chips and its importance will be growing.

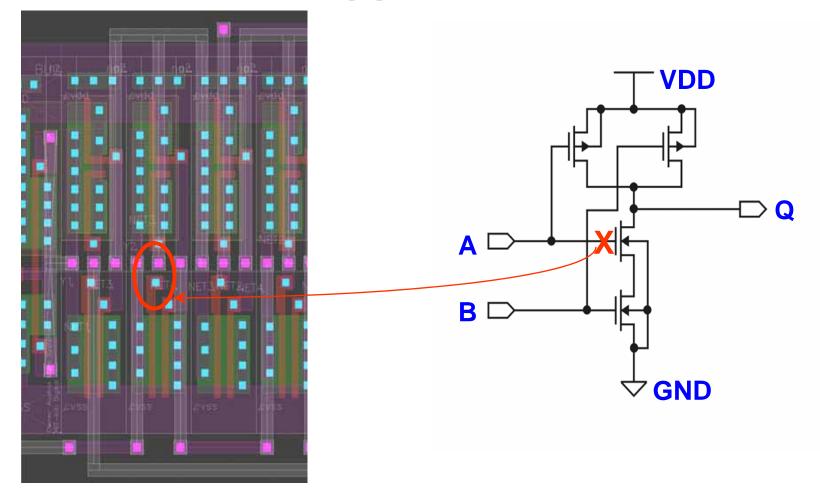
M

- There is a strong demand for well-educated specialists in the area of IC testing.
- Teaching of testing topics is based on abstract models which do not reflect well physical reality.
- Simulation alone is not sufficient, "real silicon" is needed for better understanding of test problems and for training in fault simulation and test pattern generation.

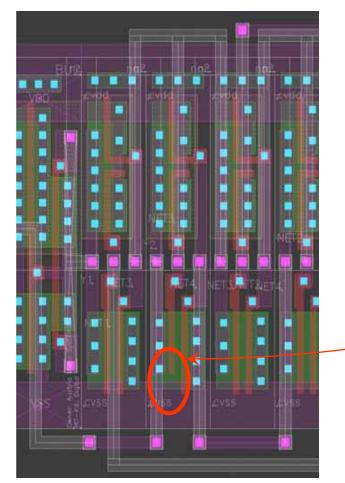

Development of a VLSI chip providing practical possibility for testing real circuits with *artificially introduced* but *real* physical defects, and in particular:

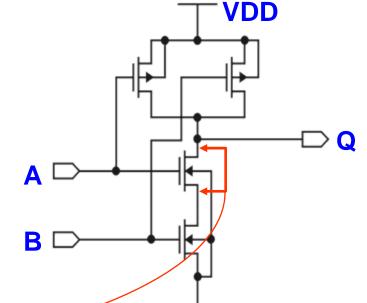
- demonstration of defects that are not easy to be modeled or for which existing fault models do not follow the real electrical effect of the respective defect precisely,
- testing of simple gates as well as gates embedded in larger digital circuits,
- comparison of theoretical and real defect coverage for various sets of test vectors,
- demonstration of I_{DDQ} testing and its efficiency,
- making the chip "student-proof" and avoiding possible damage resulting from its operation with intentionally introduced defects.

Created environment can be used in research also (e.g. in evaluation of defect-oriented test pattern generation methods and tools).

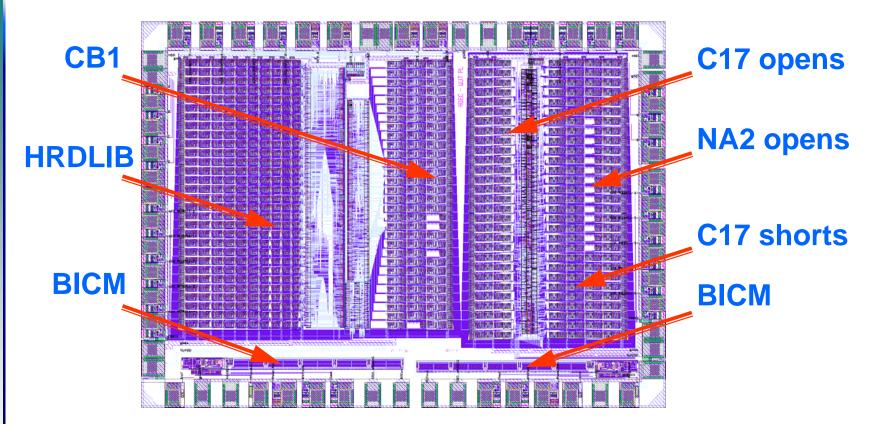

Implementation of defects

Complex cell with IN-OUT short

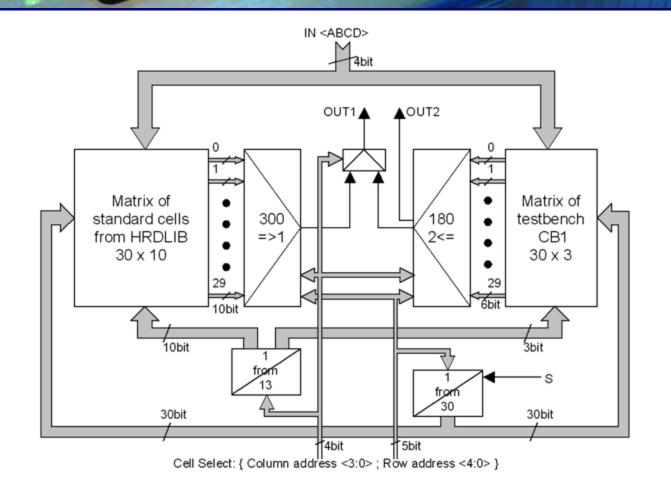

Implementation of defects


NAND2 cell with floating gate

Implementation of defects

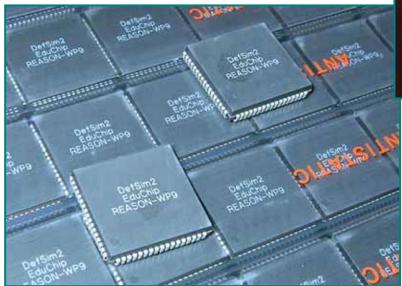

NAND2 cell with D-S short (missing poly)

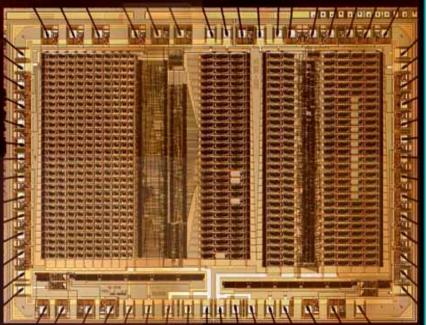
- Altogether there are over 500 different defects on the chip
 - Implemented defects are shorts and opens in metal and poly layers
- To be close to the silicon reality each cell is loaded and driven by standard non-inverting buffers


DefSim IC layout

X

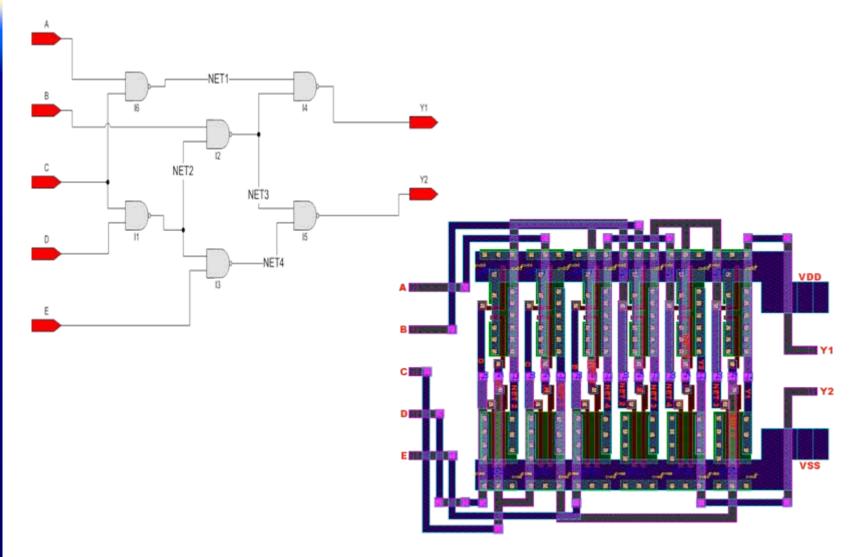
16 different complex cells and small circuits implemented For each cell there is a fault-free circuit and many copies of the same cell with intentionally injected defects.

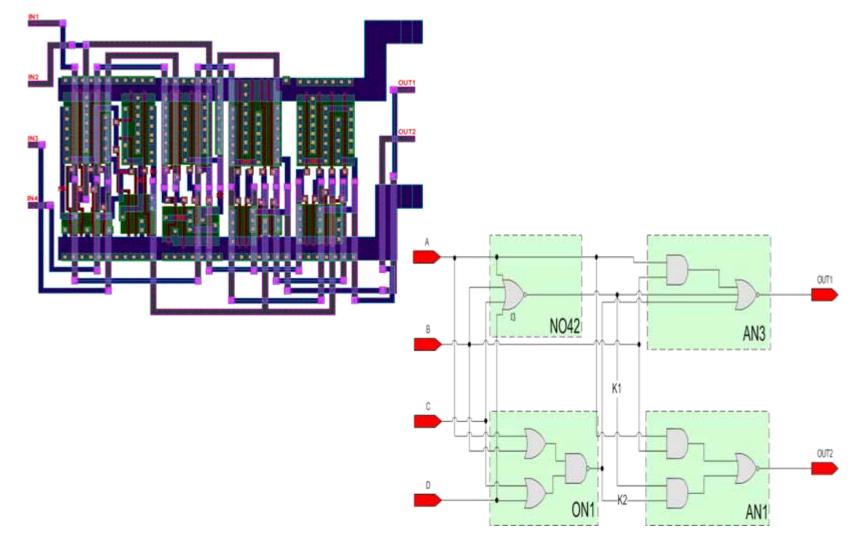

Schematic diagram of block1



Only one circuit at a time can be active (selected)

DefSim IC details

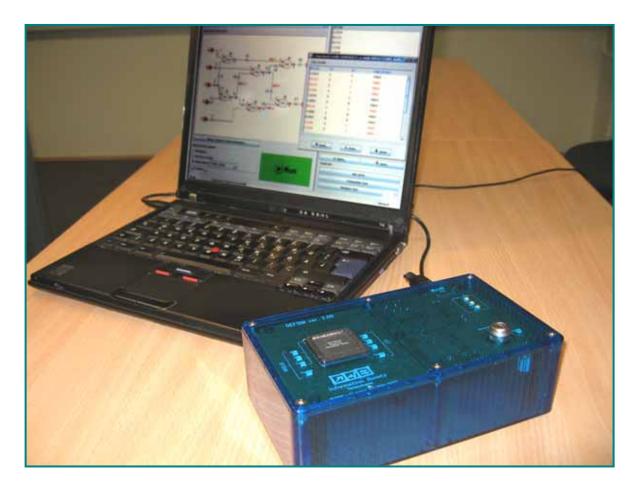

- Standard industrial technology (AMS CMOS 0.8µm CYE - 2M/2P)
- Area 19.90 mm²
- Approx. 48000 transistors
- 62 pins, JLCC68 package



A built-in current monitor for I_{DDQ} testing is implemented in each block.

DefSim Cell Examples: c17

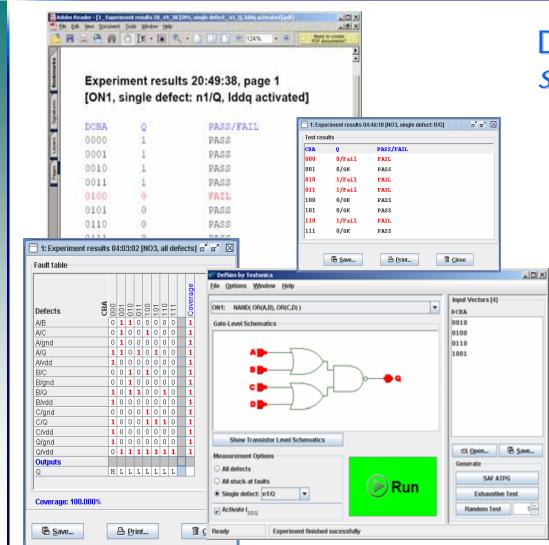
DefSim Cell Examples: CB_1



DefSim in the classroom .

With DefSim you can

- Observe the truth table of correct circuit
- Observe the truth table of defective circuit
- Obtain defect/fault tables for all specific defects
- Define test patterns automatically or manually
- Activate IDDQ and voltage measurements
- Study behavior of bridging and open faults
- Study and compare different fault models

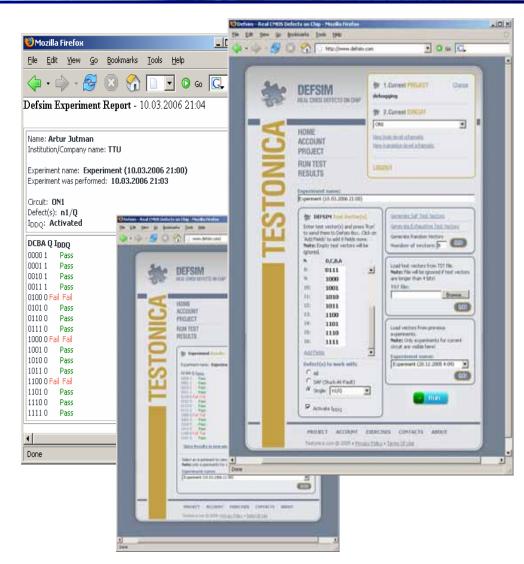

Lab environment

×

"Plug and Play" – dedicated hardware and software

DefSim software

DefSim Personal – *simple but powerful*.


X

Personal solution allows to experiment with different aspects of IC testing shortly after connecting DefSim hardware with computer. Ideal for standalone use or for small groups of users.

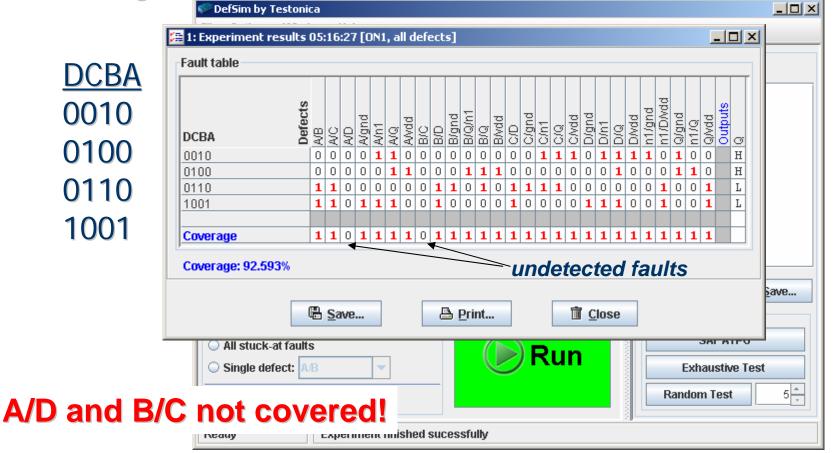
DefSim software

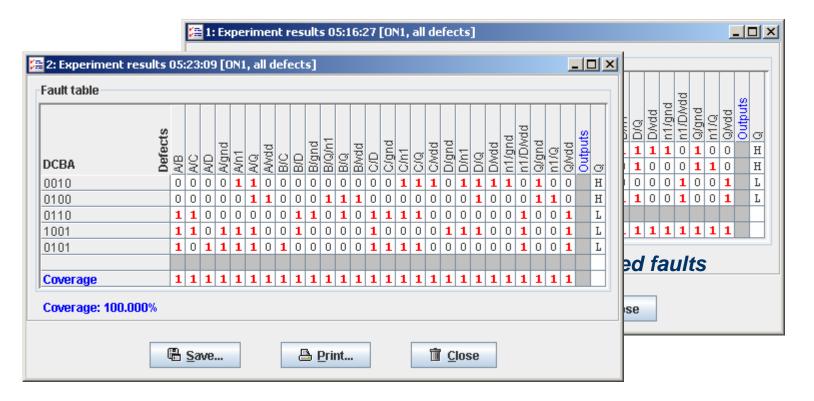
DefSim Server – *advantage by sharing*.

Built on a top of modern Web-technologies DefSim Server is capable to share single or several hardware devices between multiple users. Best suitable for organizing study process in classrooms, distance e-learning or remote Web-access services.

X

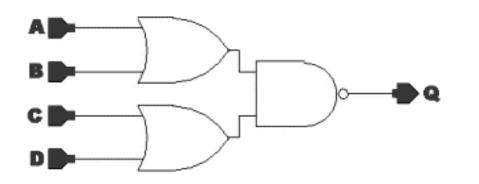
Outline


- Introduction and Motivation
- Implementation of defects
- DefSim chip structure and design
- DefSim in a lab and classroom
- DefSim software
- Experiments with defects and models
- Conclusions and Future work


Evaluating stuck-at fault model

_ 🗆 🗵 **DefSim by Testonica** File Options Window Help Input Vectors [4] NAND(OR(A,B), OR(C,D)) Ŧ ON1: DCBA 0010 Gate-Level Schematics 0100 0110 1001 Show Transistor Level Schematics B Save... 🚭 Open... Measurement Options Generate All defects SAF ATPG All stuck-at faults Run Single defect: A/B Exhaustive Test 5 Activate I DDQ Random Test Experiment finished sucessfully Ready

Evaluating stuck-at fault model

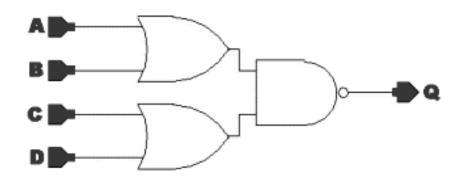


Evaluating stuck-at fault model

Either 0101 or 1010 vector need to be added

Bridging faults: wired-AND or wired-OR?

Complex gate ON1, defect: B/C


Teet	wired AND	wired OR
Test	DCBA	DCBA
1	1010	1100
2	0101	0100
3		0011
4		0010

Bridging faults: wired-AND or wired-OR?

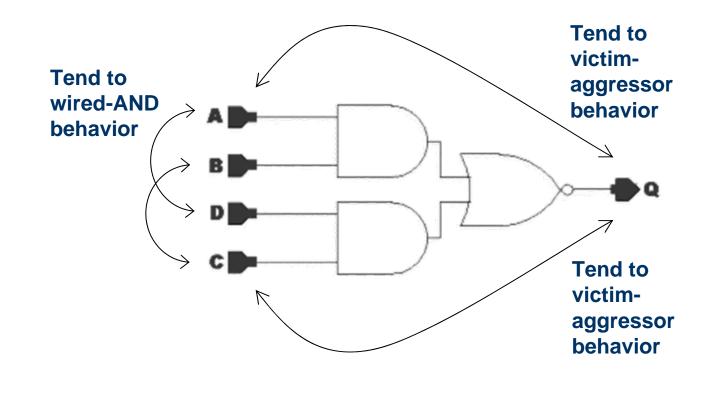
DCBA 0000	<mark>0</mark> 1/ок	PASS/FAIL PASS				
0000 0001 0010	1/0К 1/0К 1/0К	PASS PASS PASS			wired AND	wired OR
0011 0100	1/0К 1/0К	PASS PASS		Test	DCBA	DCBA
<mark>0101</mark> 0110 0111	1/Fail 0/ок 0/ок	FAIL PASS PASS		1	1010	1100
1000 1001	0/0К 1/0К 0/0К	PASS PASS PASS	> failed patterns	2	0101	0100
1010 1011	0/0К 1/Fail 0/0К	FAIL	patterns	3		0011
1100 1101	1/ок 0/ок	PASS		4		0010
1110 1111	0/0K 0/0K	PASS			I I	

Wired AND model describes this defect

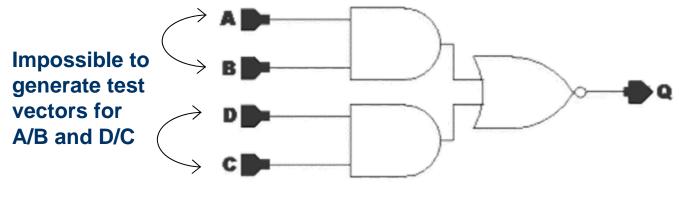
Bridging faults: further study

Complex gate ON1, defect: D/Q

Toot	wired AND	wired OR
Test	DCBA	DCBA
1	0000	0001
2	0001	0010
3	0010	0011
4	0011	1001
5	0100	1010
6	1001	1011
7	1010	1101
8	1011	1110
9		1111


Bridging faults: further study

] 1: Exper Test resul		08:56 [ON1, single defect: D/Q]	X
DCBA	0	PASS/FAIL	-
0000	0/Fail	FAIL	•
0001	0/Fail	FAIL	
0010	0/Fail	FAIL	
0011	0/Fail	FAIL	
0100	0/Fail	FAIL	
0101	0/0K	PASS	
0110	0/0K	PASS	
0111	0/0K	PASS	_
1000	1/0K	PASS	
1001	1/Fail	FAIL	
1010	1/Fail	FAIL	
1011	1/Fail	FAIL	
1100	1/0K	PASS	
1101	1/Fail	FAIL	
1110	1/Fail	FAIL	
1111	1/Fail	FAIL	-
	🖷 Save	🕒 <u>P</u> rint 🛅 <u>C</u> lose	


Test	wired AND	wired OR
1621	DCBA	DCBA
1	0000	0001
2	0001	0010
3	0010	0011
4	0011	1001
5	0100	1010
6	1001	1011
7	1010	1101
8	1011	1110
9		1111

Neither wired AND nor wired OR!? Victim-aggressor behavior: D is a stronger driver!

Behavior of shorts in DefSim

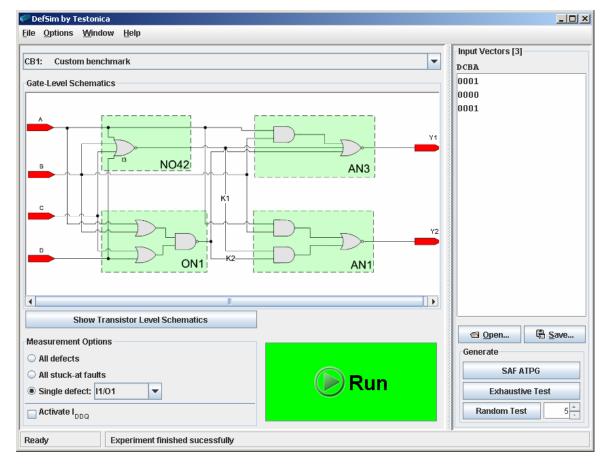
*I*_{DDQ} versus voltage testing

Complex gate AN1

*I*_{DDQ} versus voltage testing

Impossible generate te vectors for A/B and D/

	🚝 1: Experiment resu	ults 03:16:0	7 [AN1	, all d	efec	ts]														_ [그.
	Fault table																				
	DCBA	Defects A/B A/C	Agnd An1	A/Q A//dd	B/C	B/gnd	B/n1 B/Q	Bydd	Cland	C/n1	C/Q	C/vdd	D/n1	D/G	D/vdd	n1/B/gnd	n1/vdd	urgna	00044	Outputs	ø
	0000	000		1 0	0 0	0	1 1	0 (0 0	0	1	0 0		1		1			0 0		Η
	0001	000	00	0 0	0 0	0	1 1	1 (0 0			0 0) 1	1	0	1	0	1 (0 0		Η
Impossible to	0010	000	01	1 1	0 0	0	0 0	\rightarrow	0 0		\rightarrow	0 0	_		0	1	0	_	0 0		Η
generate test	0011	0 1 1		10	1 1	1	1 1	$ \rightarrow $	_	0		0 0) 0	0	0	0	1	0 (D 1		L
-	0100		+ + +	10	0 0	+	1 1		_	0		0 0		+		1		-			H
vectors for	0101	000		0 0	0 0	\rightarrow	1 1		0 0			0 0		+		1	-	-			Η
A/B and D/C	0110	0 0 0		11	0 0	++	0 0	\rightarrow	_		\rightarrow	0 0				1	-	_	0 0		Η
A/D and D/C	0111	001		10	0 1	++	0 1		_	0		0 0	_			0	-+-		0 1		L
	1000		+ + +	10	0 0	++	11	$ \rightarrow $	_	1		10	_			1	-+-	-	0 0		H
	1001		+ + +	0 0	0 0	++	11					10	_			1	-+-				H H
	1010			11	0 0	+	_		_	1		10	_			1	-+-	-			_
	1011	0 1 0		1 0 0 0	10	++	0 1		_	0		_	_						0 1 1 1		L L
	1100 1101	0 1 1		0 0	11	+-+			_	-		0 1				0 0			1 1		L
	1110			0 0	_	++							_			\rightarrow	0	_	1 1		L
	1111			1 0		+	01						_								L
							- -			Ū		-			Ū	-	Ť				-
	Coverage	0 1 1	11	1 1	1 1	. 1	1 1	1 (0 1	1	1	1 1	L 1	1	1	1	1	1 :	1 1	-	
	P	-							K												
	Coverage: 92.593%)						-			ur	d	ot	ρ	-te	20	lf	aı	ılı	s	
		🖷 Sav	e			A P	Print.					Ì	Clo	se							
r Jutman, Warsaw, F												_									


*I*_{DDO} versus voltage testing

Show Transistor Level Schematics

	SHOW	mansistui	Level	Schem
-				

Simulation Options	-			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_							_	
○ All defects		3: Experiment re	sults	; 0!	9:3	7:0	17 [(AN	1,	all	de	fec	ts,	ld	dq	ac	tiv	ate	d]										60 E	r a	7	X
○ All stuck-at faults		Fault table																														
Single defect: B/Q			s																							pu					<i>"</i>	Ī
✓ Activate I _{DDQ}		DCBA	Defects	AB	AC	AD	Avgnd	A/n1	AQ	Avdd	B/C	B/D	B/gnd	B/n1	B/Q	BNdd	Q,O	C/gnd	C/n1	C/Q	C/vdd	D/gnd	D/n1	D/O	Divide	n1/B/gnd	n1/vdd	Q/gnd	n1/Q	Q/vdd	sindino	5
· · · · · · · · · · · · · · · · · · ·		1110		1	1	1	õ	1	0	1	0	0	1	0	1	0		1	0		0	1	0			1		0	1	1	I	-
Ready Experime				-	-	-	-	-	-	-	-		-	-	-	-		_	_							-	$ \rightarrow $		$ \rightarrow $	÷		_
P		0011		0	1	1	L	L	1	0	1	1	1	1	1	0	0	0	0		1	0	0	0	1	1	1	0	0	-	I	
		0101		1	0	1	1	0	0	0	1	0	0	1	1	1	1	1	0	0	0	0	1	1	1	1	0	1	0	0	E	
		1010		1	0	1	0	1	1	1	1	0	1	0	0	0	1	0	1	1	1	1	0	0	0	1	0	1	0	0	H	1
																																1
		Coverage		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
			_													_							_	_							_	1
I _{DDQ} testing	S	olves t	h		(2	h	S	E	Y		12	al	h	il	H	٢١		r		"(כ	h		A	n	1					
DDQ COOLING																	-)		r					-	-	•••	•					
		Coverage: 100.000	1%																													
			6	<u>n</u>	<u>S</u> a	~~~	_						λ. ε	<u>Prir</u>	nt	_					南		<u>;</u> 0:	20								
				()	30	vC.							9 5	_	R	•						9	2103	56								
			_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_

Memory effects due to shorts

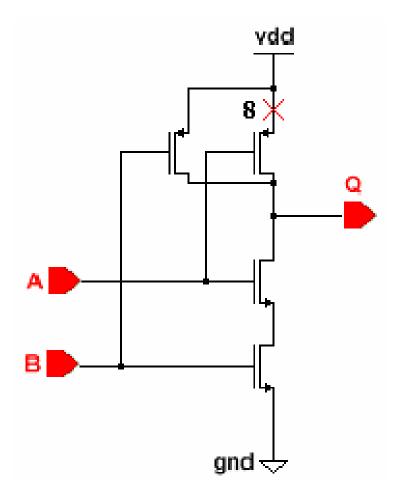
Memory effects due to shorts

ment results 11:3	0:37 [CB1, single	defect: I1/ 💶 🗆 🗙
ts		
¥2	¥1	PASS/FAIL
1/Fail	1/0K	FAIL
0/ок	0/ок	PASS
0/0K	0/Fail	FAIL
we	🖴 Print	<u> C</u> lose
	ts 1/Fail 0/0K 0/0K	Y2 Y1 1/Fail 1/OK 0/OK 0/OK 0/OK 0/Fail

Memory effects due to opens

✓ DefSim by Testonica File Options Window Help		
NA2_o: NAND(A, B) - opens		Input Vectors [4]
MAZ_0. MAND(A, D) - Opens		BA
Gate-Level Schematics		00
		10 11
nand2 0		10
Show Transistor Level Schematics		
Measurement Options		📾 Open 🖷 Save
○ All defects		Generate
All stuck at faults		SAF ATPG
Single defect: NA2_08	n	Exhaustive Test
Activate I _{DDQ}		Random Test 5
Ready Experiment finished sucessfully	1	p

11 10


<u>BA</u>

00

10

Memory effects due to opens

BA	Q	PASS/FAIL	
00	1/0K	PASS	
10	1/0K	PASS	
11	0/0K	PASS	
10	0/Fail	FAIL	
B 9	<u>ave</u>	🕒 Print	<u> C</u> lose

Future work

Current version is only the first step; our plans are

X

- Looking into *other* defect types increasing diversity
- Implementing *didactically* interesting defects
- Development of new DefSim IC versions for research needs
- Updating DefSim IC using upcoming CMOS technologies
- Development of new teaching lab scenarios

Conclusions

- The educational integrated circuit *DefSim* was designed and manufactured.
- This chip is dedicated to development of students' skills in fault simulation and test pattern generation for digital circuits.

M

- It allows applying both voltage (i.e. logical) and current test methods and offers comparing of their efficiencies on basic digital circuit examples.
- Operation of DefSim was verified experimentally.
- "Plug and Play" DefSim bundle represents a unique and easy to handle educational and research environment.

Thank your for your attention!

Try DefSim at http://www.defsim.com

Read more about DefSim at www.testonica.com

Read more about REASON project at http://reason.imio.pw.edu.pl/

