Linked list



Basics

* Each node is allocated separately as needed
* Each node is independent and only linked to others using pointers

* Typically the node that has no pointer to the next element is
considered to be the end of the list (the pNext pointer on that node is

valued NULL)
pHead

2017 2



Compared: data creation, allocation

* Fixed size array
* Size is determined with variable declaration
* Elements are sequential in memory
* Fixed size per record

* Dynamic memory allocation
 Size can be modified during runtime
* Elements are sequential in memory
* Fixed size per record

* Linked list
* Each node is given memory independently
* Elements can be located anywhere in the memory
e Record size is not fixed and can contain different data



Compared: removing a record

* Fixed size array
 Memory cannot be freed
 Removing an element is inconvenient and demanding

* Dynamic memory allocation
* Excess memory can be freed at any time
 Removing an element is inconvenient and demanding

e Linked list
* Nodes can be removed at will
 Removing an element is fast and simple

* There’s also a time factor to find the node that you need removed



Data structures

e Linked list based stack

typedef struct node {
int num;
struct node *pNext;
} stack;

e Linked list

typedef struct node {
int employeeCode;
float hourlyPay;
char *name;
DATE *dateBorn;
struct node *pNext;
} list;

2017






Advantages of linked list

* Memory fragmentation won’t cause issues on large datasets

* Optimal use of memory — we can easily allocate and free nodes at
runtime

* We can create more advanced data structures using additional
pointers to make processes much faster

* Many data structures are created based on this kind of linking (stack,
circular buffers, queues, trees e.t.c.)



Disadvantages of singly linked list

* Linear access — finding an element in a singly linked list is slow

e Larger overhead — the pointers need additional memory. In many
cases there isn't just one pointer

* Even moving through the list backwards needs additional pointers
* Not all devices support dynamic memory allocation and linked lists
* No random access



Adding to the front of the list (1) initial state

pHead




Adding to the front of the list (2) new element

pHead

-

pNew



Adding to the front of the list (3) make the

header point to the new node
pHead

-

pNew



