Linked list



Basics

* Each node is allocated separately as needed
* Each node is independent and only linked to others using pointers

* Typically the node that has no pointer to the next element is
considered to be the end of the list (the pNext pointer on that node is

valued NULL)
pHead
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Compared: data creation, allocation

* Fixed size array
* Size is determined with variable declaration
* Elements are sequential in memory
* Fixed size per record

* Dynamic memory allocation
 Size can be modified during runtime
* Elements are sequential in memory
* Fixed size per record

* Linked list
* Each node is given memory independently
* Elements can be located anywhere in the memory
e Record size is not fixed and can contain different data



Compared: removing a record

* Fixed size array
 Memory cannot be freed
 Removing an element is inconvenient and demanding

* Dynamic memory allocation
* Excess memory can be freed at any time
 Removing an element is inconvenient and demanding

e Linked list
* Nodes can be removed at will
 Removing an element is fast and simple

* There’s also a time factor to find the node that you need removed



Data structures

e Linked list based stack

typedef struct node {
int num;
struct node *pNext;
} stack;

e Linked list

typedef struct node {
int employeeCode;
float hourlyPay;
char *name;
DATE *dateBorn;
struct node *pNext;
} list;
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Advantages of linked list

* Memory fragmentation won’t cause issues on large datasets

* Optimal use of memory — we can easily allocate and free nodes at
runtime

* We can create more advanced data structures using additional
pointers to make processes much faster

* Many data structures are created based on this kind of linking (stack,
circular buffers, queues, trees e.t.c.)



Disadvantages of singly linked list

* Linear access — finding an element in a singly linked list is slow

e Larger overhead — the pointers need additional memory. In many
cases there isn't just one pointer

* Even moving through the list backwards needs additional pointers
* Not all devices support dynamic memory allocation and linked lists
* No random access



Adding to the front of the list (1) initial state

pHead




Adding to the front of the list (2) new element

pHead

-

pNew



Adding to the front of the list (3) make the

header point to the new node
pHead

-

pNew



