
Linked list



Basics

• Each node is allocated separately as needed

• Each node is independent and only linked to others using pointers

• Typically the node that has no pointer to the next element is 
considered to be the end of the list (the pNext pointer on that node is 
valued NULL)

2017 2



Compared: data creation, allocation

• Fixed size array
• Size is determined with variable declaration
• Elements are sequential in memory
• Fixed size per record

• Dynamic memory allocation
• Size can be modified during runtime
• Elements are sequential in memory
• Fixed size per record

• Linked list
• Each node is given memory independently
• Elements can be located anywhere in the memory
• Record size is not fixed and can contain different data

2017 3



Compared: removing a record

• Fixed size array
• Memory cannot be freed
• Removing an element is inconvenient and demanding

• Dynamic memory allocation
• Excess memory can be freed at any time
• Removing an element is inconvenient and demanding 

• Linked list
• Nodes can be removed at will
• Removing an element is fast and simple

• There’s also a time factor to find the node that you need removed

2017 4



Data structures

• Linked list based stack
typedef struct node {

int num;

struct node *pNext;

} stack;

• Linked list
typedef struct node {

int employeeCode;

float hourlyPay;

char *name;

DATE *dateBorn;

struct node *pNext;

} list;

2017 5



Memory

2017 6



Advantages of linked list

• Memory fragmentation won’t cause issues on large datasets

• Optimal use of memory – we can easily allocate and free nodes at 

runtime

• We can create more advanced data structures using additional 

pointers to make processes much faster

• Many data structures are created based on this kind of linking (stack, 

circular buffers, queues, trees e.t.c.)

2017 7



Disadvantages of singly linked list

• Linear access – finding an element in a singly linked list is slow

• Larger overhead – the pointers need additional memory. In many 
cases there isn't just one pointer

• Even moving through the list backwards needs additional pointers

• Not all devices support dynamic memory allocation and linked lists

• No random access

2017 8



Adding to the front of the list (1) initial state

2017 9



Adding to the front of the list (2) new element

2017 10



Adding to the front of the list (3) make the 
header point to the new node

2017 11


